
Parentheses Tree

Problem Background
Here’s the definition of a legal parentheses string :
1. ‘()’ is a legal parentheses string.
2. If ‘A’ is a legal parentheses string, then ‘(A)’ is a legal parentheses string
3. If ‘A’ and ‘B’ are legal parentheses strings, then ‘AB’ is a legal parentheses string.

Here’s the definition of a substring and a different substring:
1. A substring of a string ‘S’ is a string of consecutive characters in ‘S’. The substring of ‘S’
could be represented by the start l and the end r, denoted as S (l, r) (1 ≤ l ≤ r ≤ |S|, |S|
represents the length of S).
2. Two substrings of ‘S’ are considered different if and only if they have different positions
in ‘S’, i.e., different l or different r.

Problem Description
A tree of size n contains n nodes and n−1 edges, each edge connecting two nodes, and there is
only one simple path between any two nodes that is reachable to each other.

Q is a curious child. One day he met a tree of size n on his way to school. The nodes on the
tree are numbered from 1 to n, and node 1 is the root of the tree. Except for node 1, each node
has a father node, the father of node u (2 ≤ u ≤ n) is node fu (1 ≤ fu < u).

Q finds that each node in the tree has exactly one parenthesis, which may be ‘(’ or ‘)’. Q
defines si as: a string of parentheses along a simple path from the root node to node i, in the
order of passing the node.

Obviously, si is a parentheses string, but not necessarily a legal parentheses string, so now Q
wants to find out for all i (1≤ i ≤ n), how many distinct substrings of si are legal parentheses
strings.

Q is not able to answer this question, so he has to ask you for help. Let si have a total of ki
distinct substrings which are legal parenthesis strings, you just need to tell Q the xor sum of
all i×ki, i.e.:
(1×k1) xor (2×k2) xor (3×k3) xor...xor (n×kn)

Where xor is the exclusive OR operation.

Input
The first line is an integer n, representing the size of the tree.

The second line is a string of parentheses of length n, made up of ‘(’ and ‘)’, with the ith

parentheses representing the parentheses on node i.

javascript:;
javascript:;
javascript:;

The third line contains n−1 integers, with the ith (1 ≤ i < n) integer representing the number of
the father of node i+1, fi +1.

Output
Just one line which contains one integer for the answer.

Sample Input
5
(()()
1 1 2 2

Sample Output
6

Hint
[Explanation of Sample 1]
The shape of the tree is as the following figure:

The string formed by the parentheses from the root node to node 1 in an order of passing is ‘(’,
and the number of substrings that are legal parenthesis strings is 0.

The string from the root node to node 2 is ‘((’, and the number of substrings that are legal
parenthesis strings is 0.

The string from the root node to node 3 is ‘()’, and the number of substrings that are legal
parenthesis strings is 1.

The string from the root node to node 4 is ‘(((’, and the number of substrings that are legal
parenthesis strings is 0.

The string from the root node to node 5 is ‘(()’ and the number of substrings that are legal
parenthesis strings is 1.

[Data Range]

